In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors.
نویسندگان
چکیده
A system for interstitial photodynamic therapy is used in the treatment of thick skin tumors. The system allows simultaneous measurements of light fluence rate, sensitizer fluorescence, and tissue oxygen saturation by using the same fibers as for therapeutic light delivery. Results from ten tumor treatments using delta-aminolevulinic acid (ALA)-induced protoporphyrin IX show a significant, treatment-induced increase in tissue absorption at the therapeutic wavelength, and rapid sensitizer photobleaching. The changes in oxy- and deoxyhemoglobin content are monitored by means of near-infrared spectroscopy, revealing a varying tissue oxygenation and significant changes in blood volume during treatment. These changes are consistent with the temporal profiles of the light fluence rate at the therapeutic wavelength actually measured. We therefore propose the observed absorption increase to be due to treatment-induced deoxygenation in combination with changes in blood concentration within the treated volume. A higher rate of initial photobleaching is found to correlate with a less pronounced increase in tissue absorption. Based on the measured signals, we propose how real-time treatment supervision and feedback can be implemented. Simultaneous study of the fluence rate, sensitizer fluorescence, and local tissue oxygen saturation level may contribute to the understanding of the threshold dose for photodynamic therapy.
منابع مشابه
System for integrated interstitial photodynamic therapy and dosimetric monitoring
Photodynamic therapy for the treatment of cancer relies on the presence of light, sensitizer and oxygen. By monitoring these three parameters during the treatment a better understanding and treatment control could possibly be achieved. Here we present data from in vivo treatments of solid skin tumors using an instrument for interstitial photodynamic therapy with integrated dosimetric monitoring...
متن کاملEvaluation of the Combined Effects of Sonodynamic and Photodynamic Therapies in a Colon Carcinoma Tumor Model (CT26)
Introduction: Photodynamic therapy is a noninvasive therapeutic method for tumors with a maximum depth of 5 mm. On the other hand, most photosensitizers are also susceptible to ultrasound waves (the basis of sonodynamic therapy). Therefore, it is expected that a combination of the two therapeutic methods will increase effectiveness of photodynamic therapies for lower doses of sensitizer and cur...
متن کاملEffects of Combined Sonodynamic and Photodynamic Therapies on a Colon Carcinoma Tumor Model
Objective(s) Although photodynamic therapy is considered as a noninvasive method, most photosensitizers are susceptible to ultrasound. Therefore, it is expected that the combination of two activation methods might have a synergistic effect. This probable effect has been investigated in this study. Materials and Methods This study was conducted on colon carcinoma ...
متن کاملSkin in vivo Dosimetry in Radiotherapy
Introduction: Due to the prevalence of skin problems in patients after radiotherapy, skin dose measuring is importance. Content: Skin in vivo dosimetry means measuring the patient's (or phantom) skin dose during radiotherapy. According to the ICRP 59, the dose at the depth of 0.07 mm is known as a skin dose. The most radiosensitive epidermis cells are located...
متن کاملEvaluating the doismetric characteristics of some beta- emitter radionuclides for skin lesions irradiation
Introduction: The dosimetric characteristics of patch sources including 32P, 90Y, 188Re and 166Ho, which are employed for radionuclide skin therapy, have been evaluated in current study Materials and Methods: The patch sources understudy were modeled by MCNPX Monte Carlo code and corresponding depth dose distribution, transverse dose profile and isodose curves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2006